0

Full Content is available to subscribers

Subscribe/Learn More  >

A Numerical Study of Information Entropy in EEG Wavelet Analysis

[+] Author Affiliations
Parham Ghorbanian, Hashem Ashrafiuon

Villanova University, Villanova, PA

Paper No. DSCC2016-9836, pp. V001T10A003; 6 pages
doi:10.1115/DSCC2016-9836
From:
  • ASME 2016 Dynamic Systems and Control Conference
  • Volume 1: Advances in Control Design Methods, Nonlinear and Optimal Control, Robotics, and Wind Energy Systems; Aerospace Applications; Assistive and Rehabilitation Robotics; Assistive Robotics; Battery and Oil and Gas Systems; Bioengineering Applications; Biomedical and Neural Systems Modeling, Diagnostics and Healthcare; Control and Monitoring of Vibratory Systems; Diagnostics and Detection; Energy Harvesting; Estimation and Identification; Fuel Cells/Energy Storage; Intelligent Transportation
  • Minneapolis, Minnesota, USA, October 12–14, 2016
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5069-5
  • Copyright © 2016 by ASME

abstract

The purpose of this study is to numerically evaluate the performance of information entropy in electroencephalography (EEG) signal analysis. In particular, we use EEG data from an Alzheimer’s disease (AD) pilot study and apply several wavelet functions to determine the signals’ time and frequency characteristics. The wavelet entropy and wavelet sample entropy of the continuous wavelet transformed data are then determined at various scale ranges corresponding to major brain frequency bands. Non-parametric statistical analysis is then used to compare the entropy features of the EEG data obtained in trials with AD patients and age-matched healthy normal subjects under resting eyes-closed (EC) and eye-open (EO) conditions. The effectiveness and reliability of both choice of wavelet functions and the parameters used in wavelet sample entropy calculations are discussed and the ideal choices are identified. The result shows that, when applied to wavelet transformed filtered data, information entropy can be effective in determining EEG discriminant features, after selecting the best wavelet functions and window size of the sample entropy.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In