Full Content is available to subscribers

Subscribe/Learn More  >

An Insect Tether System Using Magnetic Levitation: Development, Analysis and Feedback Control

[+] Author Affiliations
Shih-Jung Hsu, Yagız Efe Bayiz, Pan Liu, Bo Cheng

Pennsylvania State University, University Park, PA

Paper No. DSCC2016-9767, pp. V001T09A004; 10 pages
  • ASME 2016 Dynamic Systems and Control Conference
  • Volume 1: Advances in Control Design Methods, Nonlinear and Optimal Control, Robotics, and Wind Energy Systems; Aerospace Applications; Assistive and Rehabilitation Robotics; Assistive Robotics; Battery and Oil and Gas Systems; Bioengineering Applications; Biomedical and Neural Systems Modeling, Diagnostics and Healthcare; Control and Monitoring of Vibratory Systems; Diagnostics and Detection; Energy Harvesting; Estimation and Identification; Fuel Cells/Energy Storage; Intelligent Transportation
  • Minneapolis, Minnesota, USA, October 12–14, 2016
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5069-5
  • Copyright © 2016 by ASME


Insect flight has gained wide interests in both biology and engineering communities in the past decades regarding its aerodynamics, sensing and flight control. However, studying insect flight experimentally remains a challenge in both free-flight and tethered-flight settings. In free flight experiments, due to highly unpredictable and fast flight behavior of flying insects, it is difficult to apply controlled sensory inputs to their flight system for system identification and modeling analyses. In tethered flight experiments, constrained whole body movement results in silenced proprioceptive feedback therefore breaks the flight control loop and does not reveal any flight dynamics. Therefore, this work aims to develop a novel insect tether system using magnetic levitation. Such a system magnetically fixes an insect in space but allows it to rotate freely about yaw axis with minimal interference from mechanical constraints. This paper presents the development, analysis and feedback control of this system and finally test its performance using a hawkmoth (Manduca Sexta). In addition, a system identification of the magnetic levitation system and detailed analysis in closed-loop stability and performance are provided. In the future, the insect tether system will be applied to study the insect flight aerodynamics, sensing and control.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In