Full Content is available to subscribers

Subscribe/Learn More  >

Battery State of Health Monitoring by Estimation of the Number of Cyclable Li-Ions

[+] Author Affiliations
Xin Zhou, Jeffrey L. Stein, Tulga Ersal

University of Michigan, Ann Arbor, MI

Paper No. DSCC2016-9730, pp. V001T08A001; 10 pages
  • ASME 2016 Dynamic Systems and Control Conference
  • Volume 1: Advances in Control Design Methods, Nonlinear and Optimal Control, Robotics, and Wind Energy Systems; Aerospace Applications; Assistive and Rehabilitation Robotics; Assistive Robotics; Battery and Oil and Gas Systems; Bioengineering Applications; Biomedical and Neural Systems Modeling, Diagnostics and Healthcare; Control and Monitoring of Vibratory Systems; Diagnostics and Detection; Energy Harvesting; Estimation and Identification; Fuel Cells/Energy Storage; Intelligent Transportation
  • Minneapolis, Minnesota, USA, October 12–14, 2016
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5069-5
  • Copyright © 2016 by ASME


This paper introduces a method to monitor battery state of health (SOH) by estimating the number of cyclable Li-ions, a health-relevant electrochemical variable. SOH monitoring is critical to battery management in particular for balancing the trade-off between maximizing system performance and minimizing battery degradation. However, SOH-related electrochemical variables cannot be directly measured non-invasively. Hence, estimation algorithms are needed to track those variables non-destructively while the battery is in use. In this paper, the extended Kalman filter (EKF) is used to estimate the number of cyclable Li-ions as an unknown battery parameter. Simulations are performed using an example parameter set for a hybrid-electric-vehicle battery whose cathode material is LiMn2O4 mixed with other Li-compounds to obtain estimation results under a typical electric vehicle current profile that consists of a 1 C constant current charge mode and a discharge current profile for an electric vehicle subject to the Urban Dynamometer Driving Schedule cycle. The simulations show promising results in estimation of the number of cyclable Li-ions using the EKF under the ideal conditions. Next, robustness of the algorithm under non-ideal conditions (i.e., with SOC estimation error, modeling error, and measurement noise) is analyzed, and it is shown that estimation of the number of cyclable Li-ions using the EKF preserves high accuracy even under these non-ideal conditions. The proposed estimation technique for the number of cyclable Li-ions can also be applied to other parameter sets and batteries with other cathode materials to monitor the SOH change resulting from any degradation mechanism that consumes cyclable Li-ions.

Copyright © 2016 by ASME
Topics: Ions , Batteries



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In