0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of a Novel Shoulder Exoskeleton Using Parallel Actuation and Slip

[+] Author Affiliations
Justin Hunt, Panagiotis Artemiadis, Hyunglae Lee

Arizona State University, Tempe, AZ

Paper No. DSCC2016-9894, pp. V001T06A008; 7 pages
doi:10.1115/DSCC2016-9894
From:
  • ASME 2016 Dynamic Systems and Control Conference
  • Volume 1: Advances in Control Design Methods, Nonlinear and Optimal Control, Robotics, and Wind Energy Systems; Aerospace Applications; Assistive and Rehabilitation Robotics; Assistive Robotics; Battery and Oil and Gas Systems; Bioengineering Applications; Biomedical and Neural Systems Modeling, Diagnostics and Healthcare; Control and Monitoring of Vibratory Systems; Diagnostics and Detection; Energy Harvesting; Estimation and Identification; Fuel Cells/Energy Storage; Intelligent Transportation
  • Minneapolis, Minnesota, USA, October 12–14, 2016
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5069-5
  • Copyright © 2016 by ASME

abstract

This paper presents a 5 degree-of-freedom (DoF) low inertia shoulder exoskeleton that was developed using two novel technologies with a broad range of application. The first novelty is a 3-DoF spherical parallel manipulator (SPM) that uses three linear actuators. Each actuator is designed using a method of motion coupling such that the pitch and linear stroke DoF are dependent. By using an SPM, this shoulder exoskeleton takes advantage of the inherent low effective inertia property of parallel architecture. The second novelty is a 2-DoF passive slip mechanism that couples the user’s upper arm to the SPM. This slip mechanism increases system mobility and prevents joint misalignment caused by the translational motion of the user’s glenohumeral joint from introducing mechanical interference that could affect the device’s kinematic solution or harm the user. An experiment to validate the kinematics of the SPM was performed using motion capture. A computational slip model was created to quantify the slip mechanism’s response for different conditions of joint misalignment. In addition to offering a low inertia solution for the rehabilitation or augmentation of the human shoulder, the presented device demonstrates the technologies of actuator motion coupling and passive slip for use in exoskeletal systems. The use of motion coupling could be applied to other types of parallel actuated architectures in order to constrain the kinematics or improve stiffness characteristics. Passive slip mechanisms could have application in either serial or parallel actuated systems as a means of negating the adverse effects of joint misalignment.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In