0

Full Content is available to subscribers

Subscribe/Learn More  >

Stabilizing and Control of Tilting-Rotor Quadcopter in Case of a Propeller Failure

[+] Author Affiliations
Alireza Nemati, Rumit Kumar, Manish Kumar

University of Cincinnati, Cincinnati, OH

Paper No. DSCC2016-9897, pp. V001T05A005; 8 pages
doi:10.1115/DSCC2016-9897
From:
  • ASME 2016 Dynamic Systems and Control Conference
  • Volume 1: Advances in Control Design Methods, Nonlinear and Optimal Control, Robotics, and Wind Energy Systems; Aerospace Applications; Assistive and Rehabilitation Robotics; Assistive Robotics; Battery and Oil and Gas Systems; Bioengineering Applications; Biomedical and Neural Systems Modeling, Diagnostics and Healthcare; Control and Monitoring of Vibratory Systems; Diagnostics and Detection; Energy Harvesting; Estimation and Identification; Fuel Cells/Energy Storage; Intelligent Transportation
  • Minneapolis, Minnesota, USA, October 12–14, 2016
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5069-5
  • Copyright © 2016 by ASME

abstract

In this paper, stability and control of tilting-rotor quadcopters is presented upon failure of one propeller during flight. A tilting rotor quadcopter provides advantage in terms of additional stable configurations and maneuverability. Upon failure of one propeller, a traditional quadcopter has a tendency of spinning about the primary axis fixed to the vehicle as an outcome of the asymmetry about the yaw axis. This forces the quadcopter to land abandoning its mission. The tilting-rotor configuration is an over-actuated form of a traditional quadcopter and it is capable of handling a propeller failure, thus making it a fault tolerant system. In this paper, a dynamic model of tilting-rotor quadcopter with one propeller failure is derived and a controller is designed to achieve hovering and navigation capability. The simulation results showing the effectiveness of the proposed controller is presented using the translational and hovering motion.

Copyright © 2016 by ASME
Topics: Rotors , Failure , Propellers

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In