0

Full Content is available to subscribers

Subscribe/Learn More  >

Robust Control Design for Load Reduction on a Liberty Wind Turbine

[+] Author Affiliations
Daniel Ossmann, Julian Theis, Peter Seiler

University of Minnesota, Minneapolis, MN

Paper No. DSCC2016-9719, pp. V001T04A002; 9 pages
doi:10.1115/DSCC2016-9719
From:
  • ASME 2016 Dynamic Systems and Control Conference
  • Volume 1: Advances in Control Design Methods, Nonlinear and Optimal Control, Robotics, and Wind Energy Systems; Aerospace Applications; Assistive and Rehabilitation Robotics; Assistive Robotics; Battery and Oil and Gas Systems; Bioengineering Applications; Biomedical and Neural Systems Modeling, Diagnostics and Healthcare; Control and Monitoring of Vibratory Systems; Diagnostics and Detection; Energy Harvesting; Estimation and Identification; Fuel Cells/Energy Storage; Intelligent Transportation
  • Minneapolis, Minnesota, USA, October 12–14, 2016
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5069-5
  • Copyright © 2016 by ASME

abstract

The increasing size of modern wind turbines also increases the structural loads on the turbine caused by effects like turbulence or asymmetries in the inflowing wind field. Consequently, the use of advanced control algorithms for active load reduction has become a relevant part of current wind turbine control systems. In this paper, an H-norm optimal multivariable control design approach for an individual blade-pitch control law is presented. It reduces the structural loads both on the rotating and non-rotating parts of the turbine. Classical individual blade-pitch control strategies rely on single control loops with low bandwidth. The proposed approach makes it possible to use a higher bandwidth since it takes into account coupling at higher frequencies. A controller is designed for the utility-scale 2.5 MW Liberty research turbine operated by the University of Minnesota. Stability and performance are verified using a high-fidelity nonlinear benchmark model.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In