Full Content is available to subscribers

Subscribe/Learn More  >

Robust Sliding Mode Control of Buck-Boost DC-DC Converters

[+] Author Affiliations
Max A. Reitz, Xin Wang

Southern Illinois University Edwardsville, Edwardsville, IL

Paper No. DSCC2016-9804, pp. V001T01A007; 7 pages
  • ASME 2016 Dynamic Systems and Control Conference
  • Volume 1: Advances in Control Design Methods, Nonlinear and Optimal Control, Robotics, and Wind Energy Systems; Aerospace Applications; Assistive and Rehabilitation Robotics; Assistive Robotics; Battery and Oil and Gas Systems; Bioengineering Applications; Biomedical and Neural Systems Modeling, Diagnostics and Healthcare; Control and Monitoring of Vibratory Systems; Diagnostics and Detection; Energy Harvesting; Estimation and Identification; Fuel Cells/Energy Storage; Intelligent Transportation
  • Minneapolis, Minnesota, USA, October 12–14, 2016
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5069-5
  • Copyright © 2016 by ASME


DC-DC converters are an efficient way to convert a source voltage from one to level to another and have found extensive applications in many areas such as portable electronics, solar and wind energy systems. This paper presents a comparison of first order and higher order sliding mode control of buck-boost converters. Sliding mode control is ideal for controlling non-linear systems like switched voltage regulators as a result of its robustness to internal parameter uncertainties and external disturbances. First order sliding mode control is subject to a phenomenon known as chattering, which causes an undesirable oscillation about the desired output. Computer simulation studies are presented and show that the higher order controller reduces this problem.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In