0

Full Content is available to subscribers

Subscribe/Learn More  >

PID Sliding Mode Control of Prolate Flexible Pneumatic Actuators

[+] Author Affiliations
Jonathon E. Slightam, Mark L. Nagurka

Marquette University, Milwaukee, WI

Paper No. DSCC2016-9705, pp. V001T01A004; 9 pages
doi:10.1115/DSCC2016-9705
From:
  • ASME 2016 Dynamic Systems and Control Conference
  • Volume 1: Advances in Control Design Methods, Nonlinear and Optimal Control, Robotics, and Wind Energy Systems; Aerospace Applications; Assistive and Rehabilitation Robotics; Assistive Robotics; Battery and Oil and Gas Systems; Bioengineering Applications; Biomedical and Neural Systems Modeling, Diagnostics and Healthcare; Control and Monitoring of Vibratory Systems; Diagnostics and Detection; Energy Harvesting; Estimation and Identification; Fuel Cells/Energy Storage; Intelligent Transportation
  • Minneapolis, Minnesota, USA, October 12–14, 2016
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5069-5
  • Copyright © 2016 by ASME

abstract

The inherent compliance, high power-density, and musclelike properties of soft actuators are especially attractive and useful in many applications, including robotics. In comparison to classical/modern control approaches, model-based control techniques, e.g., sliding mode control (SMC), applied to flexible fluidic actuators (FFAs) offer significant performance advantages and are considered to be state-of-the-art. Improvements in position tracking are possible using nonlinear control approaches that offer enhanced performance for common applications such as tracking of sinusoidal trajectories at high frequencies.

This paper introduces a SMC approach that increases the tracking capabilities of prolate flexible pneumatic actuators (PF-PAs). A model-based proportional, integral, derivative sliding mode control (PIDSMC) approach designed for position control of PFPAs is proposed. SMC and PIDSMC systems are implemented on low-cost open-source controls hardware and tested for tracking sinusoidal trajectories at frequencies of 0.5 Hz and 1.0 Hz with an amplitude of 8.255 mm and an offset of 12.7 mm. The PIDSMC approach reduced the maximum tracking error by 20.0%, mean error by 18.6%, and root-mean-square error by 10.5% for a 1 Hz sinusoidal trajectory and by 8.7%, 14.7%, and 3.8%, respectively, for a 0.5 Hz sinusoidal trajectory. These reductions in tracking errors demonstrate performance advantages of the PIDSMC over conventional sliding mode position controllers.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In