0

Full Content is available to subscribers

Subscribe/Learn More  >

Dynamic Characterization and Modeling of Carbon Composite Ballistic Behavior

[+] Author Affiliations
Chian-Fong Yen, Robert Kaste, Jian Yu

US Army Research Laboratory, Aberdeen Proving Ground, MD

Charles Chih-Tsai Chen, Nelson Carey

US Department of Homeland Security, Atlantic City, MD

Paper No. IMECE2016-65545, pp. V001T03A050; 7 pages
doi:10.1115/IMECE2016-65545
From:
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 1: Advances in Aerospace Technology
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5051-0

abstract

Design of the new generation of aircraft is driven by the vastly increased cost of fuel and the resultant imperative for greater fuel efficiency. Carbon fiber composites have been used in aircraft structures to lower weight due to their superior stiffness and strength-to-weight properties. However, carbon composite material behavior under dynamic ballistic and blast loading conditions is relatively unknown. For aviation safety consideration, a computational constitutive model has been used to characterize the progressive failure behavior of carbon laminated composite plates subjected to ballistic impact conditions. Using a meso-mechanics approach, a laminated composite is represented by a collection of selected numbers of representative unidirectional layers with proper layup configurations. The damage progression in a unidirectional layer is assumed to be governed by the strain-rate dependent layer progressive failure model using the continuum damage mechanics approach. The composite failure model has been successfully implemented within LS-DYNA as a user-defined material subroutine. In this paper, the ballistic limit velocity (V50) was established for a series of laminates by ballistic impact testing. Correlation of the predicted and measured V50 values has been conducted to validate the accuracy of the ballistic modeling approach for the selected carbon composite material. The availability of this modeling tool will greatly facilitate the development of carbon composite structures with enhanced ballistic and blast survivability.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In