Full Content is available to subscribers

Subscribe/Learn More  >

A New Trigonometric Higher-Order Shear and Normal Deformation Theory for Functionally Graded Plates

[+] Author Affiliations
Ankit Gupta, Mohammad Talha

Indian Institute of Technology Mandi, Mandi, India

Paper No. IMECE2016-66771, pp. V001T03A010; 8 pages
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 1: Advances in Aerospace Technology
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5051-0
  • Copyright © 2016 by ASME


In the present study, a new trigonometric higher-order shear and normal deformation theory is proposed and implemented to investigate the free vibration characteristics of functionally graded material (FGM) plates. The present theory comprises the nonlinear variation in the in-plane and transverse displacement and accommodates, both shear deformation and thickness stretching effects. It also satisfies the stress-free boundary conditions on the top and bottom surfaces of the plate without requiring any shear correction factor. The governing equations are derived using the variational principle. The effective mechanical properties of FGM plates are assumed to vary according to a power law distribution of the volume fraction of the constituents. Poisson’s ratios of FGM plates are assumed constant. The numerical solution has been obtained using an efficient displacement based C0 finite element model with eight degrees of freedom per node. The computed results are compared with 3-dimensional and quasi-3-dimensional solutions and those projected by other well-known plate theories. Natural frequencies of the functionally graded plates with various side-to-thickness ratios, boundary conditions, and volume fraction index ‘n’ have been computed. It can be concluded that the proposed model is not only accurate but also simple in predicting the vibration behavior of functionally graded plates.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In