Full Content is available to subscribers

Subscribe/Learn More  >

Multi-Objective Optimization of Human Gait With a Discomfort Function

[+] Author Affiliations
Hyun-Jung Kwon

Transportation Research Center Inc., East Liberty, OH

Hyun-Joon Chung

Korea Institute of Robot and Convergence, Pohang, Korea

Yujiang Xiang

University of Alaska Fairbanks, Fairbanks, AK

Paper No. DETC2016-59108, pp. V01AT02A062; 4 pages
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1A: 36th Computers and Information in Engineering Conference
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5007-7
  • Copyright © 2016 by ASME


The objective of this study was to develop a discomfort function for including a high DOF upper body model during walking. A multi-objective optimization (MOO) method was formulated by minimizing dynamic effort and the discomfort function simultaneously. The discomfort function is defined as the sum of the squares of deviation of joint angles from their neutral angle positions. The dynamic effort is the sum of the joint torque squared. To investigate the efficacy of the proposed MOO method, backward walking simulation was conducted. By minimizing both dynamic effort and the discomfort function, a 3D whole body model with a high DOF upper body for walking was demonstrated successfully.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In