Full Content is available to subscribers

Subscribe/Learn More  >

Muscle Force Prediction of 2D Gait Using Predictive Dynamics Optimization

[+] Author Affiliations
Yujiang Xiang

University of Alaska Fairbanks, Fairbanks, AK

Paper No. DETC2016-59107, pp. V01AT02A061; 6 pages
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1A: 36th Computers and Information in Engineering Conference
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5007-7
  • Copyright © 2016 by ASME


Cyclic human gait is simulated in this work by using a 2D musculoskeletal model with 12 degrees of freedom (DOF). Eight muscle groups are modeled on each leg. Predictive dynamics approach is used to predict the walking motion. In this process, the model predicts joints dynamics and muscle forces simultaneously using optimization schemes and task-based physical constraints. The results indicated that the model can realistically match human motion, ground reaction forces (GRF), and muscle force data during walking task. The proposed optimization algorithm is robust and the optimal solution is obtained in seconds. This can be used in human health domain such as leg prosthesis design.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In