Full Content is available to subscribers

Subscribe/Learn More  >

Quantifying Model Discrepancy in Coupled Multi-Physics Systems

[+] Author Affiliations
Samuel Friedman, Douglas Allaire

Texas A&M University, College Station, TX

Paper No. DETC2016-59948, pp. V01AT02A024; 11 pages
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1A: 36th Computers and Information in Engineering Conference
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5007-7
  • Copyright © 2016 by ASME


Current design strategies for multi-physics systems seek to exploit synergistic interactions among disciplines in the system. However, when dealing with a multidisciplinary system with multiple physics represented, the use of high-fidelity computational models is often prohibitive. In this situation, recourse is often made to lower fidelity models that have potentially significant uncertainty associated with them. We present here a novel approach to quantifying the discipline level uncertainty in coupled multi-physics models, so that these individual models may later be used in isolation or coupled within other systems. Our approach is based off of a Gibbs sampling strategy and the identification of a necessary detailed balance condition that constrains the possible characteristics of individual model discrepancy distributions. We demonstrate our methodology on both a linear and nonlinear example problem.

Copyright © 2016 by ASME
Topics: Physics



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In