Full Content is available to subscribers

Subscribe/Learn More  >

Investigating Predictive Metamodeling for Additive Manufacturing

[+] Author Affiliations
Zhuo Yang, Douglas Eddy, Sundar Krishnamurty, Ian Grosse

University of Massachusetts Amherst, Amherst, MA

Peter Denno

National Institute of Standards and Technology, Gaithersburg, MD

Felipe Lopez

University of Texas at Austin, Austin, TX

Paper No. DETC2016-60506, pp. V01AT02A020; 10 pages
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1A: 36th Computers and Information in Engineering Conference
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5007-7
  • Copyright © 2016 by ASME


Additive manufacturing (AM) is a new and disruptive technology that comes with a set of unique challenges. One of them is the lack of understanding of the complex relationships between the numerous physical phenomena occurring in these processes. Metamodels can be used to provide a simplified mathematical framework for capturing the behavior of such complex systems. At the same time, they offer a reusable and composable paradigm to study, analyze, diagnose, forecast, and design AM parts and process plans. Training a metamodel requires a large number of experiments and even more so in AM due to the various process parameters involved. To address this challenge, this work analyzes and prescribes metamodeling techniques to select optimal sample points, construct and update metamodels, and test them for specific and isolated physical phenomena. A simplified case study of two different laser welding process experiments is presented to illustrate the potential use of these concepts. We conclude with a discussion on potential future directions, such as data and model integration while also accounting for sources of uncertainty.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In