Full Content is available to subscribers

Subscribe/Learn More  >

Development of a New Thermo-Mechanical Environmental Fatigue Testing Facility to Investigate the Impact of Thermal Strain Gradients on Fatigue Initiation

[+] Author Affiliations
N. Platts, P. Brown, P. J. Gill, R. D. Smith, J. W. Stairmand

Amec Foster Wheeler, Warrington, UK

Paper No. PVP2016-63161, pp. V01AT01A020; 9 pages
  • ASME 2016 Pressure Vessels and Piping Conference
  • Volume 1A: Codes and Standards
  • Vancouver, British Columbia, Canada, July 17–21, 2016
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5035-0
  • Crown Copyright © 2016


Light water reactor coolant environments are known to significantly reduce the fatigue life of austenitic stainless steels. However, most available data are derived from isothermal testing of membrane loaded tensile specimens, whereas the majority of plant loading transients result from thermal transients and involve significant through-wall strain gradients. This paper describes the development of a high temperature water facility to enable both thin and thick wall hollow fatigue endurance specimens to be subjected to thermal and mechanical loading for a wide range of thermal cycles including rapid shock loading.

Thermal shock loading from 300°C to between 40 and 150°C has been achieved and Finite Element Analysis, FEA, has been used to calculate the thermally induced strain profiles through a 12mm thick-wall specimen. This indicates peak surface thermal strain ranges of up to 0.8% for a transient between 300 and 40°C. Testing is underway to investigate the impact of the strain gradient and thermal waveform on the fatigue life of this specimen where significantly longer lives may be expected compared to membrane loaded specimens.

The ability within the same facility to apply simulated thermal shock profiles to both thick-wall specimens and mechanically loaded thin wall specimens provides a powerful tool to assess the impact of thermal fatigue loading and thermal strain gradients on component life.

Crown Copyright © 2016



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In