Full Content is available to subscribers

Subscribe/Learn More  >

Oxygen Used as an Oxidizer in Acid In-Situ Leach Uranium: From Theory to Practice

[+] Author Affiliations
Wensheng Liao, Yahui Tan, Limin Wang, Jianhua Li

Beijing Research Institute of Chemical Engineering and Metallurgy, Beijing, China

Paper No. ICONE24-60126, pp. V001T02A010; 8 pages
  • 2016 24th International Conference on Nuclear Engineering
  • Volume 1: Operations and Maintenance, Aging Management and Plant Upgrades; Nuclear Fuel, Fuel Cycle, Reactor Physics and Transport Theory; Plant Systems, Structures, Components and Materials; I&C, Digital Controls, and Influence of Human Factors
  • Charlotte, North Carolina, USA, June 26–30, 2016
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5001-5
  • Copyright © 2016 by ASME


A typical sandstone uranium deposit, located in the Tuhar basin, was selected to compare the effect of oxygen as the oxidizer with that of hydrogen peroxide. Based on the feasibility study of oxygenation of ferrous and uranium minerals, batch leaching, pressure column leaching and field testing were carried through. The results of feasibility study and laboratory leaching indicate that ferrous ion is inaccessible to being oxidized by pressure oxygen in acidic solutions with pH 2–2.5, and oxygen can oxidize the uranium minerals. Recovery of uranium is proportional to the oxygen pressure. Additionally, the low concentrations of aluminium and ferric ion alleviate the potential precipitation of aluminum and iron significantly. The further field test confirmed the feasibility of oxygen in acid leach. Oxygen has some extent effects of increasing uranium level and considerable effects of anti-precipitation and clogging. In general, oxygen has better applicability in this deposit.

Copyright © 2016 by ASME
Topics: Oxygen , Uranium



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In