0

Full Content is available to subscribers

Subscribe/Learn More  >

Preliminary Investigation of Physical Characteristics in a New Power Ramp Test Irradiation Rig

[+] Author Affiliations
Liang Zhang, Liqing Qiu, Mingyan Tong

Nuclear Power Institute of China, Chengdu, China

Paper No. ICONE24-60052, pp. V001T02A004; 5 pages
doi:10.1115/ICONE24-60052
From:
  • 2016 24th International Conference on Nuclear Engineering
  • Volume 1: Operations and Maintenance, Aging Management and Plant Upgrades; Nuclear Fuel, Fuel Cycle, Reactor Physics and Transport Theory; Plant Systems, Structures, Components and Materials; I&C, Digital Controls, and Influence of Human Factors
  • Charlotte, North Carolina, USA, June 26–30, 2016
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5001-5
  • Copyright © 2016 by ASME

abstract

Power Ramp test (PRT) of a fuel element is generally conducted with a PRT irradiation rig within a research reactor, in order to study the fuel’s behavior and validate its safety under power transient. Neutronics characteristics of a new PRT irradiation rig within a typical HFETR (High Flux Engineering Test Reactor) core and its components’ heat generation rates are calculated with MCNP code in this paper. The range of the test fuel rod power is obtained with a coupled Neutronic-Thermal-Hydraulic calculation method which combines MCNP and CFX code. The results show that changing the density of 3He gas can vary the test fuel rod power effectively, and the 3He gas layer influences the neutron field intensely by reducing the thermal neutron current into the layer and decreasing the neutron flux in and near the irradiation rig. The test fuel rod power varies from 5.80kW to 15.3kW while decreasing the 3He gas pressure from 4.5MPa to 0.13MPa, along with 0.231$ reactivity addition. Power of the fuel pellet in the test rod increases monotonically along with the 3He gas pressure reducing, and its calculation results have good agreement with the curve fitting by a natural logarithm function.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In