Full Content is available to subscribers

Subscribe/Learn More  >

Non-Invasive On-Line Monitoring for Nuclear Power Plants Using Guided Waves Propagating in Steel Pipes With Different Types of Structural Complexity

[+] Author Affiliations
Francesco Bertoncini, Marco Raugi

University of Pisa, Pisa, Italy

Mauro Cappelli

ENEA FSN-FUSPHY-SCM, Frascati, Italy

Francesco Cordella

ENEA FSN-FUSPHY-SAD, Frascati, Italy

Paper No. ICONE24-60885, pp. V001T01A010; 7 pages
  • 2016 24th International Conference on Nuclear Engineering
  • Volume 1: Operations and Maintenance, Aging Management and Plant Upgrades; Nuclear Fuel, Fuel Cycle, Reactor Physics and Transport Theory; Plant Systems, Structures, Components and Materials; I&C, Digital Controls, and Influence of Human Factors
  • Charlotte, North Carolina, USA, June 26–30, 2016
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5001-5
  • Copyright © 2016 by ASME


On-line monitoring for installed piping in Nuclear Power Plants (NPPs), as well as for Oil & Gas and other kind of plants, is crucial to early detect local ageing effects and locate single defects before they may result in critical failures. All the actions able to prevent failures are of great value especially if non-invasive and allowing an In-Service Inspection (ISI). In particular the Long Term Operation (LTO) and Plant Life Extension (PLEX) may be invalidated from radiation, thermal, mechanical stresses besides their own ageing. Hence on-line monitoring techniques are of much interest especially if they assure the required safety levels and at the same time are simple and cost-effective. Guided Waves (GW) satisfy these requirements since they are structure-borne ultrasonic waves that propagate themselves without interfering along the same pipe structure, which in turns through its geometric boundaries serves as a confining structure for the GW used to test its integrity. The frequencies used for GW testing extend up to 250 kHz, thus allowing a long-range inspection of pipes (tens of meters in favorable circumstances). The experimental conditions (e.g. temperature, complex piping structure, wall thickness, materials) have to be considered since they strongly affect the results but GW generated through magnetostrictive sensors are expected to overcome such issues due to their robustness and positioning ease. In this paper, new experimental tests conducted using the proposed methodology for steel pipes having different types of structural complexity are described.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In