0

Full Content is available to subscribers

Subscribe/Learn More  >

In-Plant 3D Positioning System Using Point Cloud Data for Remote Decontamination Machine

[+] Author Affiliations
Yoshinori Satoh, Tetsuro Aikawa, Naoya Sakamoto

Toshiba Co., Kawasaki, Japan

Yuji Kawaguchi, Masahiro Saito, Masayuki Kaneda, Hitoshi Sakai

Toshiba Co., Yokohama, Japan

Paper No. ICONE24-60551, pp. V001T01A008; 5 pages
doi:10.1115/ICONE24-60551
From:
  • 2016 24th International Conference on Nuclear Engineering
  • Volume 1: Operations and Maintenance, Aging Management and Plant Upgrades; Nuclear Fuel, Fuel Cycle, Reactor Physics and Transport Theory; Plant Systems, Structures, Components and Materials; I&C, Digital Controls, and Influence of Human Factors
  • Charlotte, North Carolina, USA, June 26–30, 2016
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5001-5
  • Copyright © 2016 by ASME

abstract

Toshiba Corporation, a member of International Research Institute of Nuclear Decommissioning (IRID), has contributed to decontamination works throughout Fukushima Daiichi Nuclear Power Plant from outside ground to inside of the buildings. Speedy decontamination works allow workers to access and stay inside of the contaminated buildings for many hours, and as a result, all decommission works can be accelerated. Some remote decontamination machines to decontaminate the inside of the reactor buildings from a remote safe building have been developed for workers not to be radiated by high-level radiation. Conventionally, operators have remotely controlled the decontamination machine through multiple views of some remote surveillance cameras mounted on it. Because the position data such as GPS data is not available in the buildings, it was hard for operators to detect its absolute position and orientation in the building, and it took much time to recognize targets to be decontaminated. In order to reduce positioning time and make operation works easier, we constructed 3D positioning system to automatically detect the absolute 3D position of the decontamination machine in the reactor buildings from a remote safe building. Moreover, we can also keep records of decontamination works easily by tracking 3D position of the decontamination machine.

This paper shows the overview of our approach of 3D positioning and a result of examinations in the mock-up facility that simulates a part of the inside of the reactor building at Fukushima Daiichi NPP.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In