0

Full Content is available to subscribers

Subscribe/Learn More  >

An Innovative FPSO Design Hosting SCRs in the North Sea Harsh Environment

[+] Author Affiliations
Alaa M. Mansour, Ricardo Zuccolo, Cheng Peng, Chunfa Wu, Bill Greiner, Dhiraj Kumar, Jefferson Azevedo

Intecsea, WorleyParsons Group, Houston, TX

Paper No. OMAE2016-55140, pp. V001T01A051; 8 pages
doi:10.1115/OMAE2016-55140
From:
  • ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 1: Offshore Technology; Offshore Geotechnics
  • Busan, South Korea, June 19–24, 2016
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4992-7
  • Copyright © 2016 by ASME

abstract

Floating Production Storage and Offloading (FPSO) floaters have the advantages of providing the required storage in the hull and direct offloading to tankers of opportunity in deep and ultra-deep water in areas lacking infra-structure.

Steel Catenary Risers (SCRs) are the preferred solution in wet-tree applications due to their simplicity, robustness and low Capital costs (CAPEX) and Operational costs (OPEX) compared to other riser options. However, due to its relatively high dynamic motions, FPSO is not a feasible host for SCRs in most environments and especially so in the North Sea very harsh environment. Also, for efficient production from rich reservoirs, large diameter and number of risers are typically required. This makes it more challenging to find a robust and commercially attractive riser solution.

In this paper a novel design for an FPSO with the ability to host SCRs in the North Sea very harsh environment is presented and evaluated. The novel design, namely, Low Motion FPSO (LM-FPSO), has a hull form with a generally rectangular cross-section. The platform is moored in-place using a conventional mooring system. The LM-FPSO performance is enhanced with the robust low-tech feature, namely, free-hanging solid ballast tank (SBT). The SBT is located certain distance below hull keel and connected to the hull through four groups of short tendons. All tendon components are the same as those used in conventional TLPs. Through the mass and added mass of the SBT, the LM-FPSO provides significantly improved heave, roll and pitch responses.

The paper presents detailed description of the novel North Sea LM-FPSO design and its in-service performance. The SCR’s feasibility is discussed. The identified risks and associated mitigations for the new design compared to the conventional FPSO are investigated and reported. The paper concludes with discussions on the project execution plan and cost benefit when developing fields using this novel design.

Copyright © 2016 by ASME
Topics: Design , FPSO , North Sea

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In