0

Full Content is available to subscribers

Subscribe/Learn More  >

Influence of the Draft Condition on Vortex-Induced Motions of a Semi-Submersible Platform With Four Square Columns

[+] Author Affiliations
Mingyue Liu, Longfei Xiao, Haining Lu, Jun Li

Shanghai Jiao Tong University, Shanghai, China

Xiaochuan Yu

University of New Orleans, New Orleans, LA

Paper No. OMAE2016-54764, pp. V001T01A048; 9 pages
doi:10.1115/OMAE2016-54764
From:
  • ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 1: Offshore Technology; Offshore Geotechnics
  • Busan, South Korea, June 19–24, 2016
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4992-7
  • Copyright © 2016 by ASME

abstract

The vortex-induced motions (VIM) phenomenon of semi-submersibles has drawn increasing attention with the development (mainly increase of column size) of new semi-submersibles. Due to the elongated submerged columns and the enlarged projected area to current, deep-draft semi-submersible platforms are susceptible to higher in-line drag forces and transverse vortex-induced lift forces, resulting in considerable horizontal motions in a current environment. In order to check the influence of draft conditions on VIM of the semi-submersible platform with four square columns, experimental investigations with five draft ratios varying from 0.87 to 1.90 were carried out in a towing tank.

The 6-degree-of-freedom (6-DOF) motions of the model were recorded by the motion acquisition system, in synchronisation with restoring forces provided by four load cells, one for each horizontal mooring spring. This paper discusses the dynamic behavior of a semi-submersible platform in five different draft conditions, including coupled motions at the water surface plane, drag and lift forces, and spectral analysis. It is shown that the largest transverse amplitudes are around 75% of the column width in the range of 6.0 ≤ Ur ≤ 8.0 for the deep-draft semi-submersible (H/L = 1.90). With 50% of the immerged column height of the deep-draft model, a 30% decrease in the transverse motion amplitude can be seen. Furthermore, the effects of the draft condition on yaw responses and current loads are also addressed.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In