0

Full Content is available to subscribers

Subscribe/Learn More  >

Bilge Keel Induced Roll Damping of an FPSO With Sponsons

[+] Author Affiliations
Babak Ommani, Nuno Fonseca, Christopher Hutchison

MARINTEK, Trondheim, Norway

Trygve Kristiansen

NTNU, Trondheim, Norway

Hanne Bakksjø

Teekay Offshore Production, Trondheim, Norway

Paper No. OMAE2016-54420, pp. V001T01A025; 10 pages
doi:10.1115/OMAE2016-54420
From:
  • ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 1: Offshore Technology; Offshore Geotechnics
  • Busan, South Korea, June 19–24, 2016
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4992-7
  • Copyright © 2016 by ASME

abstract

The bilge keel induced roll damping of an FPSO with sponsons is investigated numerically and experimentally. The influence of the bilge keel size, on the roll damping is studied. Free decay tests of a three-dimensional ship model, for three different bilge keel sizes are used to determine roll damping coefficients. The dependency of the quadratic roll damping coefficient to the bilge keel height and the vertical location of the rotation center is studied using CFD. A Navier-Stokes solver based on the Finite Volume Method is adopted for solving the laminar flow of incompressible water around a section of the FPSO undergoing forced roll oscillations in two-dimensions. The free-surface condition is linearized by neglecting the nonlinear free-surface terms and the influence of viscous stresses in the free surface zone, while the body-boundary condition is exact. An averaged center of rotation is estimated by comparing the results of the numerical calculations and the free decay tests. The obtained two-dimensional damping coefficients are extrapolated to 3D by use of strip theory argumentations and compared with the experimental results. It is shown that this simplified approach can be used for evaluating the bilge keel induced roll damping with efficiency, considering unconventional ship shapes and free-surface proximity effects.

Copyright © 2016 by ASME
Topics: Damping , FPSO , Keel

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In