Full Content is available to subscribers

Subscribe/Learn More  >

Stochastic Linearization and its Application in Motion Analysis of Cylindrical Floating Structure With Bilge Boxes

[+] Author Affiliations
Yan-Lin Shao, Jikun You, Einar Bernt Glomnes

Sevan Marine ASA, Arendal, Norway

Paper No. OMAE2016-55059, pp. V001T01A016; 12 pages
  • ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 1: Offshore Technology; Offshore Geotechnics
  • Busan, South Korea, June 19–24, 2016
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4992-7
  • Copyright © 2016 by ASME


To account for the viscous effects of damping devices, for instance, bilge keels or bilge boxes, on the motions of ships and offshore structures, Morison’s equation is often adopted as an empirical but practical approach in the design process. In order to combine the standard engineering panel method with the drag term in Morison’s equation, and remain in the frequency domain, the drag term has to be linearized based on, for instance, stochastic linearization. In this paper, the stochastic linearization scheme is implemented in an in-house code and verified through the comparison with the DNV GL software WADAM.

The model test results of a large cylindrical FPSO with bilge box are used to calibrate the drag coefficients in the Morison’s equation. When the linearized drag forces are included, heave motion RAOs correspond better to the model test results. However, the predicted natural periods of heave motions are seen to be smaller than those obtained from model tests. It is suspected that the viscous flow separation around the bilge box increases the added mass of the unit beyond what is predicted by potential flow alone. Discussions are made on the effect of viscous added mass on the heave natural period.

It is quite common to only include the damping effects in the motion analysis for large offshore structures and ignore the contribution of the viscous effects on the excitation force. For the considered cylindrical FPSO, this paper demonstrates that the viscous excitation force can be important in survival conditions.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In