0

Full Content is available to subscribers

Subscribe/Learn More  >

Study on the Effect of Inlet Geometry on the Noise of an Axial Fan, With Involvement of the Phased Array Microphone Technique

[+] Author Affiliations
Tamás Benedek, János Vad

Budapest University of Technology and Economics, Budapest, Hungary

Paper No. GT2016-57772, pp. V001T09A014; 9 pages
doi:10.1115/GT2016-57772
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 1: Aircraft Engine; Fans and Blowers; Marine
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4968-2
  • Copyright © 2016 by ASME

abstract

The paper presents a comparative case study in which a free-inlet, free-outlet industrial ventilating fan has been equipped with various inlet geometries. The original short-tapered entry has been replaced by a standardized bellmouth entry, resulting in remarkable noise reduction. The experimentation presented herein is adaptable to industrial onsite diagnostics. The upstream-radiated broadband noise associated with rotating sources has been mapped in a spatially resolved manner, by means of a Phased Array Microphone system and a Rotating Source Identifier beamforming algorithm. The acoustic measurements have been supplemented with aerodynamic measurements on the inlet velocity profile, and with Computational Fluid Dynamics studies. The acoustic data have been processed for enabling their evaluation in association with the aerodynamic operation of the elemental rotor cascades in a two-dimensional approach, and also for their interpretation in relationship to three-dimensional flow phenomena such as tip leakage flow. For this purpose, the acoustic data have been presented in the form of circumferentially-averaged noise profiles along the blade span, as well as noise source imaging maps. The studies reveal the following acoustic benefits of reconfiguring the original short-tapered entry to the bellmouth entry. A peripheral separation zone is characteristic for the short-tapered entry, provoking double-leakage tip clearance flow, being the dominant source of noise at higher frequencies. Such a peripheral separation zone is suppressed by the bellmouth inlet, and thus, the double-leakage flow and the related noise is eliminated. Farther away from the tip, along the dominant portion of the span, the moderation of endwall blockage due to suppressing the peripheral separation zone has led to the reduction of the rotor inlet velocity, thus moderating the noise associated with the suction side boundary layer developing on the blades.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In