Full Content is available to subscribers

Subscribe/Learn More  >

Aerodynamic and Acoustic Performance of a Single Stage Axial Fan With Extensive Blade Sweep Designed to Limit Noise Emissions

[+] Author Affiliations
Daniel Giesecke, Jens Friedrichs, Udo Stark

Technische Universität Braunschweig, Braunschweig, Germany

Maik Dierks

AKG Thermotechnik International GmbH & Co. KG, Hofgeismar, Germany

Paper No. GT2016-56555, pp. V001T09A004; 11 pages
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 1: Aircraft Engine; Fans and Blowers; Marine
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4968-2
  • Copyright © 2016 by ASME


Not only the aerodynamic performance of axial flow fans is important but also the acoustic behaviour plays a vital role. It is to be expected that in the future noise limits will be more regulated by legislation. The aim of this project is to develop a very versatile tool for efficient and noise reduced axial flow fans in rotor / stator configuration.

This paper describes the design, numerical verification and tests of a highly loaded single stage axial flow fan making use of extensive blade sweep in rotor and stator for acoustic reasons. The tests include aerodynamic and acoustic investigations.

The stage is a conventional free vortex design with unconventional blades of a special planform. The blade sections of both rotor and stator are NACA 65-sections on circular arc mean lines. Sectional diffusion factors and de Haller numbers are close to their respective limits, especially for the sections next to the rotor and stator hubs.

The rotor is characterised by a forward-swept leading edge with increasing sweep angle towards hub and tip and an unswept trailing edge. The leading edge of the stator blades is forward-swept as before but this time at an almost constant sweep angle between the hub and the two-thirds position of the blade span. The trailing edge is straightened for reducing the previously mentioned aerodynamic loadings.

The study shows that the numerical results are consistent with the experimental outcome. It concludes that the advanced design features show potential aerodynamic and acoustic benefits by sweeping the blade in the described manner. This is particularly the case when comparing to single row designs.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In