Full Content is available to subscribers

Subscribe/Learn More  >

A Comparison of Actuator Disc Models for Axial Flow Fans in Large Air-Cooled Heat Exchangers

[+] Author Affiliations
Michael B. Wilkinson, Francois G. Louw, Sybrand J. van der Spuy, Theodor W. von Backström

Stellenbosch University, Stellenbosch, South Africa

Paper No. GT2016-56491, pp. V001T09A003; 13 pages
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 1: Aircraft Engine; Fans and Blowers; Marine
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4968-2
  • Copyright © 2016 by ASME


The performance of large mechanical draft air-cooled heat exchangers is directly related to fan performance which is influenced by atmospheric wind conditions, as well as the plant layout. It is often necessary to numerically model the entire system, including fans, under a variety of operating conditions.

Full three-dimensional, numerical models of axial flow fans are computationally expensive to solve. Simplified models that accurately predict fan performance at a lesser expense are therefore required. One such simplified model is the actuator disk model (ADM). This model approximates the fan as a disk where the forces generated by the blades are calculated and translated into momentum sources. This model has been proven to give good results near and above the design flow rate of a fan, but not at low flow rates. In order to address this problem two modifications were proposed, namely the extended actuator disk model (EADM) and the reverse engineered empirical actuator disk model (REEADM).

The three models are presented and evaluated in this paper using ANSYS FLUENT. The models are simulated at different flow rates representing an axial flow fan test facility. The resulting performance results and velocity fields are compared to each other and to previously simulated three dimensional numerical results, indicating the accuracy of each method. The results show that the REEADM gives the best correlation with experimental performance results at design conditions (ϕ = 0.168) while the EADM gives the best correlation at low flow rates.

A comparison of the velocity profiles shows that none of the three models predict the radial velocity distribution at low flow rates correctly, however the correlation improves at flow rates above ϕ = 0.105. In general the upstream velocity profiles, where reversed flow occurs through the fan, are poorly predicted at low flow rates. At the flow rates above ϕ = 0.137 the correlation between the velocity profiles for the simplified modes and the three dimensional results is good.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In