Full Content is available to subscribers

Subscribe/Learn More  >

Analytic Assessment of an Embedded Aircraft Propulsion

[+] Author Affiliations
Peter F. Pelz, Ferdinand-J. Cloos

Technische Universität Darmstadt, Darmstadt, Germany

Jörg Sieber

MTU Aero Engines AG, München, Germany

Paper No. GT2016-57524, pp. V001T01A028; 8 pages
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 1: Aircraft Engine; Fans and Blowers; Marine
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4968-2
  • Copyright © 2016 by ASME


This paper investigates analytically the advantage of the embedded propulsion compared to a state of the art propulsion of an aircraft. Hereby, we are applying the integral method of boundary layer theory and potential theory to analyse the boundary layer thickness and the impact of the flow acceleration due to the embedded propulsion. The aircraft body is treated as a flat plate. The engine is treated as a momentum disc but there is a trade off, since the engine efficiency is effected by the boundary layer. The outcome of the energetic assessment is the following: the propulsion efficiency is increased by the embedded propulsion and the drag of the aircraft body is reduced. The optimized aircraft engine size depending on Reynolds number is given.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In