Full Content is available to subscribers

Subscribe/Learn More  >

The Numerical Simulation of Multi-Scale Oil Films Using Coupled VOF and Eulerian Thin-Film Models

[+] Author Affiliations
B. Kakimpa, H. P. Morvan, S. Hibberd

University of Nottingham, Nottingham, UK

Paper No. GT2016-56747, pp. V001T01A020; 10 pages
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 1: Aircraft Engine; Fans and Blowers; Marine
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4968-2
  • Copyright © 2016 by ASME


This paper presents a coupled ETFM-VOF framework for the numerical simulation of multi-scale thin liquid films. A depth-averaged Eulerian thin-film model (ETFM) is used to simulate the oil flow in very thin-film regions where film thicknesses are below the grid resolution while elsewhere in the domain where grid resolution is sufficient to resolve the film, a traditional Volume-of-Fluid (VOF) approach is retained. The two approaches are coupled through momentum and mass conserving source terms and a transition criterion is introduced where the total liquid volume fraction in each cell is evaluated and either the ETFM or VOF approach used depending on the sufficiency of the local grid resolution. Using this approach, thin-film flows characterised by multiple film thickness scales may be reliably simulated at a relatively lower computational cost. The model builds upon currently available ETFM and VOF approaches to thin-film modelling and represents a novel approach to the numerical simulation of multiphase flows involving a varying range of film thickness scales in space and time. A numerical test case of the 3D rimming flow inside an idealised aero-engine bearing chamber has been used to demonstrate the approach and comparisons made against high resolution VOF solutions.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In