Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Study on Two-Phase Flows in Scavenge Pump for Aircraft Engine Oil System

[+] Author Affiliations
Laurent Ippoliti, Olivier Berten, Patrick Hendrick

Université Libre de Bruxelles, Brussels, Belgium

Paper No. GT2016-56062, pp. V001T01A004; 8 pages
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 1: Aircraft Engine; Fans and Blowers; Marine
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4968-2
  • Copyright © 2016 by ASME


This work is the continuation of previous studies on gerotor-type pump performance in turbofan engine oil systems operated as feed pumps in single-phase liquid oil. The focus here is on scavenge pumps whose role is to pump a mix of air and oil. This paper is intended to present the modifications that had to be made on the test rig from the previous studies to model a scavenge system and more generally to add two-phase flow capacity. The paper presents results from the first successful experimental test campaign. The aim is to characterize the performance of a typical pump, already tested as a feed pump, in the scavenge system. The critical performance parameter studied is the volumetric efficiency which determines the size and weight of the pump. This paper ends by drawing conclusions on the rig and the results, and linking them with the previous single-phase flows studies.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In