0

# On Some Problems With Modeling of Coulomb Friction in Self-Locking Speed Reducers

[+] Author Affiliations
Marek Wojtyra

Warsaw University of Technology, Warsaw, Poland

Paper No. DETC2014-34737, pp. V006T10A014; 9 pages
doi:10.1115/DETC2014-34737
From:
• ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
• Volume 6: 10th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
• Buffalo, New York, USA, August 17–20, 2014
• Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
• ISBN: 978-0-7918-4639-1

## abstract

A simple mathematical model of friction in speed reducers is presented and discussed. A rigid body approach, typical for multibody simulations, is adopted. The model is based on the Coulomb friction law and exploits the analogy between reducers and wedge mechanisms.

The first version of the model is purely rigid, i.e. no deflections of the mechanism bodies are allowed. Constraints are introduced to maintain the ratio between input and output velocity. It is shown that when friction is above the self-locking limit, paradoxical situations may be observed when kinetic friction is investigated. For some sets of parameters of the mechanism (gearing ratio, coefficient of friction and inertial parameters) two distinct solutions of normal and friction forces can be found. Moreover, for some combinations of external loads, a solution that satisfies equations of motion, constraints and Coulomb friction law does not exist. Furthermore, for appropriately chosen loads and parameters of the mechanism, infinitely many feasible sets of normal and friction forces can be found. Examples of all indicated paradoxical situations are provided and discussed.

The second version of the model allows deflection of the frictional contact surface, and forces proportional to this deflection are applied to contacting bodies (no constraints to maintain the input-output velocity ratio are introduced). In non-paradoxical situations the obtained results are closely similar to those predicted by the rigid body model. In previously paradoxical situations no multiple solutions of friction force are found, however, the amended model does not solve all problems. It is shown that in regions for which the paradoxes were observed only unstable solutions are available. Numerical examples showing behavior of the model are provided and analyzed.

Topics: Friction , Coulombs , Modeling

## Interactive Graphics

### Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

### Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Proceedings Articles
Related eBook Content
Topic Collections