Full Content is available to subscribers

Subscribe/Learn More  >

Transient Hydrodynamic Forces on a Disconnectable Turret Buoy

[+] Author Affiliations
Z. J. Huang, K. M. Walker, S. Lee

ExxonMobil Upstream Research Company, Houston, TX

W. Thanyamanta, D. Spencer

Oceanic Consulting Corporation, St. John’s, NL, Canada

Paper No. OMAE2014-23174, pp. V01AT01A011; 10 pages
  • ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 1A: Offshore Technology
  • San Francisco, California, USA, June 8–13, 2014
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4537-0
  • Copyright © 2014 by ASME


For disconnectable turret-moored FPSOs, accurate prediction of turret buoy and FPSO motions during the buoy disconnection process is essential for safe operations. For deepwater high production rate systems, large size buoys are required to accommodate the large number of risers and heavy mooring legs. Analytical models of hydrodynamic forces on large size buoys must be verified before they are applied to motion predictions. To gain a better understanding of the transient hydrodynamic loads on the buoy and hydrodynamic interactions between the buoy and the hull during disconnection, we conducted a specially designed model test in a tow tank. In the model tests, both the buoy and the FPSO models were forced to oscillate by two independent actuators in calm water and in waves. Summary of test results, computed transient hydrodynamic forces from a simplified approach, a true time-domain transient hydrodynamic analysis based on instantaneous buoy positions, and computational fluid dynamics (CFD) results are presented in this paper.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In