Full Content is available to subscribers

Subscribe/Learn More  >

Validation of Cerebral Blood Flow in Intracranial Aneurysms: CFD Versus 7 Tesla 4D PC-MRI

[+] Author Affiliations
P. Berg, G. Janiga, D. Stucht, O. Speck, D. Thévenin

University of Magdeburg, Magdeburg, Germany

Paper No. SBC2013-14289, pp. V01AT04A007; 2 pages
  • ASME 2013 Summer Bioengineering Conference
  • Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments
  • Sunriver, Oregon, USA, June 26–29, 2013
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5560-7
  • Copyright © 2013 by ASME


The number of numerical studies predicting blood flow in intracranial aneurysms is rapidly increasing over the last years. Due to a high spatial as well as temporal resolution, computational fluid dynamics (CFD) approaches offer a high potential to investigate flow interaction within the human vascular system. However, state-of-the-art methods still underlie several assumptions, e.g., rigid vessel walls, analytical boundary conditions or the consideration of blood as a single-phase continuous fluid. In consequence, the acceptance of CFD is still limited among a majority of physicians [1]. In order to overcome these reasonable doubts, simulations need to be validated via experiments. Therefore, two patient-specific intracranial aneurysms were measured by means of 7-Tesla magnetic resonance imaging (MRI). Afterwards, highly resolved numerical simulations were carried out and the peak-systolic velocity fields compared in a qualitative manner.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In