Full Content is available to subscribers

Subscribe/Learn More  >

Wall Shear Stress and Intraluminal Thrombus Changes in Abdominal Aortic Aneurysms: Study With Longitudinal Patients

[+] Author Affiliations
B. Zambrano, F. Jaberi, S. Baek

Michigan State University, East Lansing, MI

W. Lee

Seoul National University Hospital, Seoul, Korea

Paper No. SBC2013-14684, pp. V01AT01A005; 2 pages
  • ASME 2013 Summer Bioengineering Conference
  • Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments
  • Sunriver, Oregon, USA, June 26–29, 2013
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5560-7
  • Copyright © 2013 by ASME


Abdominal Aortic Aneurysm (AAA), a focal enlargement of the abdominal aorta is an ongoing process that can be affected by many parameters. Among these parameters, hemodynamics and intraluminal thrombus layer (ILT) play important roles on AAA growth. It is widely accepted that hemodynamic forces (normal and shear forces) have a profound impact on the mechano-homeostasis of the arterial wall and its vascular remodeling. The role of ILT, however, remains controversial. Some studies suggest that ILT may be beneficial by shieling the weak aneurysm wall, whereas others claim that the presence of ILT can lead to immune responses that increase protease breakdown of collagen and elastin, adversely affecting wall strength. ILT is formed by the deposition of blood clots called thrombus. Thrombus formation is achieved through different mechanisms, but all research agrees that shear fluid forces are one of the key parameters for the formation and development of ILT. There are few studies to date that use these three parameters to assess the evolution of AAAs growth. Here, we explore the relation between wall shear stress (WSS), ILT and AAA expansion using longitudinal CT images from follow-up studies from 3 patients (a total of 8 scans). We used geometrical models of AAAs segmented from patient images to estimate outer surface displacement, ILT, and tissue thickness. Additionally, we used fluid dynamic data to estimate wall shear stress at peak systolic. These parameters were then used to investigate possible relationships with each other.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In