Full Content is available to subscribers

Subscribe/Learn More  >

Turbomachinery for a Supercritical CO2 Electro-Thermal Energy Storage System

[+] Author Affiliations
R. Fuller

Barber-Nichols, Inc., Arvada, CO

J. Hemrle, L. Kaufmann

ABB Switzerland AG, Baden-Dättwil, Switzerland

Paper No. GT2013-95112, pp. V008T34A011; 11 pages
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 8: Supercritical CO2 Power Cycles; Wind Energy; Honors and Awards
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5529-4
  • Copyright © 2013 by ASME


This paper presents analysis of CO2 turbomachinery for the electro-thermal energy storage (ETES) concept for site-independent bulk (grid-scale) electric energy storage. In charging mode, ETES operates as a transcritical CO2 heat pump, consuming electric energy which is converted into thermal energy stored in the form of hot water and ice on the hot and cold side of the cycle, respectively. On demand, the CO2 cycle is reversed for discharging during which ETES operates as transcritical CO2 power generation plant, consuming the stored hot and cold sources. The target capacity of the ETES system is of the order of units of MW electric to ∼100 MW electric, with typical daily cycles and 4 to 8 hours of storage. The estimated electric-to-electric round trip efficiency of ETES is about 60%.

A companion paper [1] presents the control concept of the ETES plant and discusses several issues specific to the ETES plant design and operation. This paper analyzes these particular requirements from the perspective of the CO2 turbomachinery required for the storage plant, presenting the selection of the turbomachinery types and their shaft arrangement suitable for the ETES. The expected performance, main design features and challenges are discussed, together with questions related to the scalability of the turbomachines towards high power targets. Impacts of the turbomachinery designs on the ETES system performance, such as the sensitivity of the system electric-to-electric round trip efficiency on the turbomachinery efficiency are discussed.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In