0

Full Content is available to subscribers

Subscribe/Learn More  >

The Challenges of Uniform Crystal Temperature Sensor (UCTS) Application in Turbomachinery

[+] Author Affiliations
Justin Brown, Jason DeVoe

QuEST Global NA, Inc., Phoenix, AZ

Lev Ginzbursky

LG Tech-Link, LLC, Gilbert, AZ

Paper No. GT2013-95909, pp. V03CT14A030; 11 pages
doi:10.1115/GT2013-95909
From:
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 3C: Heat Transfer
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5516-4
  • Copyright © 2013 by ASME

abstract

The quality of information, which is necessary to help designers further improve turbine engine performance, requires sophisticated analytics working hand-in-hand with well-developed experimental methods. Historically, the test instrumentation used in harsh, real engine conditions was short-lived, invasive, and not very accurate. This was accepted as the practical reality and the data obtained in an engine test cell had been used as little more than a sanity check or a trend indicator during the design process. Today expectations are much higher and the challenge is to develop experimental tools that can deliver the accuracy required to verify analytical predictions, calibrate computer models and to provide ground for critical design decisions in a way which was not possible before.

Successful introduction of UCTS (Uniform Crystal Temperature Sensor) Technology to the leading engine manufacturers demonstrated that it has the potential to overcome the typical issues of testing in a real engine environment. It is robust, non-intrusive and capable of high accuracy temperature measurement. It is based on the mechanism of heat transfer conduction, of which the fundamental theory is rigorous and simple. Our experience has shown that in order for a UCTS-based system to realize its promise, all potential sources of error must be tightly managed. LG Tech-Link identified important factors of influence that could complicate measurement and increase its uncertainty. Among them are variations in the part’s geometry, TBC thickness, boundary conditions, and installation methodology. These have been selected as the focus of this study.

The authors of this paper are using 3D Finite Element Analysis (FEA) methodology to investigate the possible pitfalls in the process of UCTS application that could cause loss of accuracy. It is the authors’ intention to probe the sensitivity of temperature at the location of the sensor to the major technological factors. The findings emphasize the value of collaboration between instrumentation, test and analytical engineers when planning engine tests and interpreting their results. Practicing engineers will be able to use the presented recommendations, methodologies and case studies to ensure the application of UCTS in their projects is accurate, compatible with test objectives and cost effective.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In