0

Full Content is available to subscribers

Subscribe/Learn More  >

Unsteady, Half-Annulus CFD Calculations of Thermal Migration Through a Cooled, 2.5 Stage High-Pressure Turbine

[+] Author Affiliations
James A. Tallman

General Electric Global Research, Niskayuna, NY

Paper No. GT2013-95823, pp. V03CT14A027; 13 pages
doi:10.1115/GT2013-95823
From:
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 3C: Heat Transfer
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5516-4
  • Copyright © 2013 by ASME

abstract

This paper presents an industrial perspective on the potential use of multiple-airfoil row, unsteady CFD calculations in high-pressure turbine design cycles. A sliding-mesh unsteady CFD simulation is performed for a high-pressure turbine section of a modern aviation engine at conditions representative of engine take-off. The turbine consists of two stages plus a center-frame strut upstream of the low-pressure turbine. The airfoil counts per row are such that a half-annulus model domain must be simulated for periodicity. The total model domain size is 170MM computational grid points, and the solution requires approximately 9 days of clock time on 6,288 processing cores of a Cray XE6 supercomputer. Airfoil and endwall cooling flows are modeled via source term additions to the flow. The endwall flowpath cavities and their purge/leakage flows are resolved in the computational meshes to an extent. The time-averaged temperature profile solution is compared with static rake data taken in engine tests. The unsteady solution shows a considerable improvement in agreement with the rake data, compared with a steady-state solution using circumferential mixing planes. Passage-to-passage variations in gas temperature prediction are present in the 2nd stage, due to non-periodic alignment between the nozzle vanes and rotor blades. These passage-to-passage differences are quantified and contrasted.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In