0

Full Content is available to subscribers

Subscribe/Learn More  >

The Response of High Intensity Turbulence in the Presence of Large Stagnation Regions

[+] Author Affiliations
N. Chowdhury

Texas A&M University, College Station, TX

F. E. Ames

University of North Dakota, Grand Forks, ND

Paper No. GT2013-95055, pp. V03CT14A020; 10 pages
doi:10.1115/GT2013-95055
From:
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 3C: Heat Transfer
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5516-4
  • Copyright © 2013 by ASME

abstract

Relatively small scale turbulence is known to intensify in the presence of a stagnation region due to the elongation of these eddies by the mean strain field of the approach flow. Experimental evidence also demonstrates that the large scale eddies are blocked as they approach presence of the stagnation surface. Recent heat transfer measurements suggest that very high intensity turbulence or turbulence in the presence of very large scale leading edge regions may not be as strongly influenced by the stagnation region strain field. Understanding the physics of turbulence is critical to the improvement of turbulence models which are used to predict the surface heat load in gas turbine hot sections.

This paper documents the response of high intensity turbulence in the approach flow of two large cylindrical leading edge regions. Measurements of turbulence intensity, scale, spectra, and dissipation have been acquired for five elevated levels of turbulence in the approach flow of two large diameter (0.1016 m and 0.4064 m) leading edge regions. Generally, three influences were observed. Initially, in the presence of the largest cylinder the smaller scale higher intensity turbulence showed increased decay due to longer effective convection times. Secondly, dissipation levels, as estimated from the inertial subrange of the one-dimensional spectra, initially decreased then increased as the strain field intensified in the presence of the stagnation regions. Finally, the measurements indicated that the energy in the low wave number spectra was increasingly blocked in the near wall region of the leading edge.

Copyright © 2013 by ASME
Topics: Turbulence

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In