Full Content is available to subscribers

Subscribe/Learn More  >

Single- and Two-Phase Flow in Microchannels With Heat Transfer and Driven by an EHD Conduction Pump

[+] Author Affiliations
Matthew R. Pearson

United Technologies Research Center, East Hartford, CT

Jamal Seyed-Yagoobi

Illinois Institute of Technology, Chicago, IL

Paper No. IMECE2011-64798, pp. 937-952; 16 pages
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 10: Heat and Mass Transport Processes, Parts A and B
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5496-9
  • Copyright © 2011 by ASME and United Technologies Corp.


Microchannels have well-known applications in cooling because of their ability to handle large quantities of heat from small areas. Electrohydrodynamic (EHD) conduction pumping at the micro-scale has previously been demonstrated to effectively pump dielectric liquids through adiabatic microchannels by using electrodes that are flushed against the walls of the channel. In this study, an EHD micropump is used to pump liquid within a two-phase loop that contains a microchannel evaporator. Additional EHD electrodes are embedded within the evaporator, which can be energized separately from the adiabatic pump. The enhancement effect of these embedded electrodes on the heat transport process in the micro-evaporator and on the two-phase loop system is characterized. Single- and two-phase heat transfer regimes are both studied and the effect of applied voltage and heat flux are considered on the overall flow rate and the wall temperature of the microchannel.

Copyright © 2011 by ASME and United Technologies Corp.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In