0

Full Content is available to subscribers

Subscribe/Learn More  >

Vibrational Contribution to Thermal Conductivity of Silicon Near Solid-Liquid Transition

[+] Author Affiliations
Christopher H. Baker, Chengping Wu, Richard N. Salaway, Leonid V. Zhigilei, Pamela M. Norris

University of Virginia, Charlottesville, VA

Paper No. IMECE2011-64064, pp. 351-355; 5 pages
doi:10.1115/IMECE2011-64064
From:
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 10: Heat and Mass Transport Processes, Parts A and B
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5496-9
  • Copyright © 2011 by ASME

abstract

Although thermal transport in silicon is dominated by phonons in the solid state, electrons also participate as the system approaches, and exceeds, its melting point. Thus, the contribution from both phonons and electrons must be considered in any model for the thermal conductivity, k, of silicon near the melting point. In this paper, equilibrium molecular dynamics simulations measure the vibration mediated thermal conductivity in Stillinger-Weber silicon at temperatures ranging from 1400 to 2000 K — encompassing the solid-liquid phase transition. Non-equilibrium molecular dynamics is also employed as a confirmatory study. The electron contribution may then be estimated by comparing these results to experimental measurements of k. The resulting relationship may provide a guide for the modeling of heat transport under conditions realized in high temperature applications, such as laser irradiation or rapid thermal processing of silicon substrates.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In