Full Content is available to subscribers

Subscribe/Learn More  >

Effective Software Verification and Validation Approach for Nuclear Power Plant Digital Instrumentation and Control Systems

[+] Author Affiliations
Steve Yang

AREVA NP Inc., Alpharetta, GA

Jun Ding, Huifang Miao, Jianxiang Zheng

Xiamen University, Xiamen, Fujian, China

Paper No. ICONE18-29264, pp. 659-665; 7 pages
  • 18th International Conference on Nuclear Engineering
  • 18th International Conference on Nuclear Engineering: Volume 1
  • Xi’an, China, May 17–21, 2010
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4929-3
  • Copyright © 2010 by ASME


All 1000 MW nuclear power plants currently in construction or projected to-be-built in China will use the digital instrumentation and control (I&C) systems. Safety and reliability are the ultimate concern for the digital I&C systems. To obtain high confidence in the safety of digital I&C systems, rigorous software verification and validation (V&V) life-cycle methodologies are necessary. The V&V life-cycle process ensures that the requirements of the system and software are correct, complete, and traceable; that the requirements at the end of each life-cycle phase fulfill the requirements imposed by the previous phase; and the final product meets the user-specified requirements. The V&V process is best illustrated via the so-called V-model. This paper describes the V-model in detail by some examples. Through the examples demonstration, it is shown that the process detailed in the V-model is consistent with the IEEE Std 1012-1998, which is endorsed by the US Regulatory Guide 1.168-2004. The examples show that the V-model process detailed in this paper provides an effective V&V approach for digital I&C systems used in nuclear power plants. Additionally, in order to obtain a qualitative mathematical description of the V-model, we study its topological structure in graph theory. This study confirms the rationality of the V-model. Finally, the V&V approach affording protection against common-cause failure from design deficiencies, and manufacturing errors is explored. We conclude that rigorous V&V activities using the V-model are creditable in reducing the risk of common-cause failures.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In