Full Content is available to subscribers

Subscribe/Learn More  >

Treatment and Disposal of the Radioactive Graphite Waste

[+] Author Affiliations
Lifang Tian, Mingfen Wen, Jing Chen

Tsinghua University, Beijing, China

Paper No. ICONE18-29985, pp. 501-509; 9 pages
  • 18th International Conference on Nuclear Engineering
  • 18th International Conference on Nuclear Engineering: Volume 1
  • Xi’an, China, May 17–21, 2010
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4929-3
  • Copyright © 2010 by ASME


A large number of nuclear reactors with graphite as moderator and reflector material are facing to be decommissioned now or later, and the radioactive graphite waste is a large part of the involved wastes. In addition, high temperature gas-cooled reactors being developed rapidly use a large quantity of graphite material (up to 95%) in the nuclear fuel elements, besides graphite material as their moderator and reflector material in the reactor cores. Therefore, it is very critical to manage these graphite wastes from the decommissioned and being decommissioned reactors. The part with low-level radioactive contamination that could not be reused now, may be disposed of as solid waste to reduce its volume, and the possibility of its being retrieved and reused in the future with advanced technology should be considered. The other graphite waste with high-level radioactive contamination requires much more consideration. Due to several factors, such as its large quantity, a lack of available disposal sites and public acceptance, it may not be disposed of directly in the repository any more. An option may be the transformation of the high-level radioactive graphite waste into low-level radioactive waste through physical and chemical processes. The current technologies involve, e.g., thermal treatment to release 36 Cl, capture of the 14 C from the gases of incineration of carbon material and decomposition of carbon dioxide into solid carbon. After these treatments the carbon material might be decontaminated and separated as low-level radioactive waste and a small amount of residual high-level waste could be disposed of ultimately. In order to achieve a sustainable development of graphite material, the maximum utility and the minimal disposal of radioactive graphite should be considered in the management of radioactive graphite waste. It is urgent to explore new technologies for decontaminating and recycling radioactive graphite.

Copyright © 2010 by ASME
Topics: Graphite



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In