Full Content is available to subscribers

Subscribe/Learn More  >

TRACE5 Simulation of Condensation-Induced Water Hammer Phenomena

[+] Author Affiliations
S. Gallardo, V. Abella, G. Verdú

Universidad Politécnica de Valencia, Valencia, Spain

Paper No. ICONE18-30057, pp. 311-318; 8 pages
  • 18th International Conference on Nuclear Engineering
  • 18th International Conference on Nuclear Engineering: Volume 1
  • Xi’an, China, May 17–21, 2010
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4929-3
  • Copyright © 2010 by ASME


The purpose of this work is to test the capability of TRACE5 code in the simulation of thermal-hydraulic transients concerning Condensation-Induced Water Hammer (CIWH) phenomena in a horizontal branch pipe connected to the vessel downcomer. The CIWH is produced by the condensation of the steam by subcooled water counterflow in the horizontal pipe, which causes two-phase flow interfacial instability, and is capable of initiating a severe water hammer, possibly leading to significant plant damage. The work is developed in the frame of OECD/NEA ROSA Project Test 2, performed in the Large Scale Test Facility (LSTF) of the Japan Atomic Energy Agency (JAEA) [1]. The purpose is to provide an analytical model for the LSTF installation, in order to evaluate the critical inlet water flow rates and system pressures of CIWH in a long horizontal pipe without using interfacial friction factor or heat transfer coefficients and using the default TRACE criterion of transition from stratified to a slug flow. The analytical model is designed with the thermal-hydraulic code TRACE5 via 1D-components, reproducing the actual branch where the CIWH is produced. A TEE component is connected to a FILL component, which simulates the water injection, and to a BREAK component set to the boundary conditions that simulate the downcomer. Our model uses one-dimensional flow equations and default correlations of interfacial shear stress and heat and mass transfer available by TRACE. Several comparisons are performed, varying pressure system and water injection mass flow rates. Simulated pressure pulses are characterized, studying parameters such as geometry nodalization, time-step effect, Courant number, numerical diffusion, etc. Results show that 1D model slightly underestimates the maximum pressure pulse intensity in all cases considered.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In