0

Full Content is available to subscribers

Subscribe/Learn More  >

Evaluation on Radiological Consequence Induced by MSLB Accident With Alternative Source Term

[+] Author Affiliations
Jingxi Li, Gaofeng Huang, Lili Tong

Shanghai Jiao Tong University, Shanghai, China

Paper No. ICONE18-29615, pp. 195-200; 6 pages
doi:10.1115/ICONE18-29615
From:
  • 18th International Conference on Nuclear Engineering
  • 18th International Conference on Nuclear Engineering: Volume 1
  • Xi’an, China, May 17–21, 2010
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4929-3
  • Copyright © 2010 by ASME

abstract

The major threat that nuclear power plants (NPPs) pose to the safety of the public comes from the large amount radioactive material released during design-basis accidents (DBAs). Additionally, many aspects of Control Room Habitability, Environmental Reports, Facility Siting and Operation derive from the design analyses that incorporated the earlier accident source term and radiological consequence of NPPs. Depending on current applications, majority of Chinese NPPs adopt the method of TID-14844, which uses the whole body and thyroid dose criteria. However, alternative Source Term (AST) are commonly used in AP1000 and some LWRs (such as Beaver Valley Power Station, Units No. 1 and No. 2, Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 And 2, Kewaunee Power Station and so on), so it is attempted to adopt AST in radiological consequence analysis of other nuclear power plants. By introducing and implementing the method of AST defined in RG 1.183 and using integral safety analysis code, a pressurized water reactor (PWR) of 900 MW nuclear power plant analysis model is constructed and the radiological consequence induced by Main Steam Line Break (MSLB) accident is evaluated. For DBA MSLB, the fractions of core inventory are assumed to be in the gap for various radionuclides and then the release from the fuel gap is assumed to occur instantaneously with the onset of assumed damage. According to the assumptions for evaluating the radiological consequences of PWR MSLB, dose calculation methodology is performed with total effective dose equivalent (TEDE) which is the criteria of dose evaluation. Compared with dose criteria of RG 1.183, the dose of control room, exclusion area boundary and outer boundary of low population zone are acceptable.

Copyright © 2010 by ASME
Topics: Accidents

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In