Full Content is available to subscribers

Subscribe/Learn More  >

Progressive Evolution of the Core of the Fast Breeder Test Reactor

[+] Author Affiliations
S. Varatharajan, K. V. Sureshkumar, K. V. Kasiviswanathan, G. Srinivasan

Indira Gandhi Centre for Atomic Research, Kalpakkam, India

Paper No. ICONE18-29404, pp. 125-130; 6 pages
  • 18th International Conference on Nuclear Engineering
  • 18th International Conference on Nuclear Engineering: Volume 1
  • Xi’an, China, May 17–21, 2010
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4929-3
  • Copyright © 2010 by ASME


The second stage of Indian nuclear programme envisages the deployment of fast reactors on a large scale for the effective use of India’s limited uranium reserves. The Fast Breeder Test Reactor (FBTR) at Kalpakkam is a loop type, sodium cooled fast reactor, meant as a test bed for the fuels and structural materials for the Indian fast reactor programme. The reactor was made critical with a unique high plutonium MK-I carbide fuel (70% PuC+30%UC). Being a unique untested fuel of its kind, it was decided to test it as a driver fuel, with conservative limits on Linear Heat Rating and burn-up, based on out-of-pile studies. FBTR went critical in Oct 1985 with a small core of 23 MK-I fuel subassemblies. The Linear Heat Rating and burn-up limits for the fuel were conservatively set at 250 W/cm & 25 GWd/t respectively. Based on out-of-pile simulation in 1994, it was possible to raise the LHR to 320 W/cm. It was decided that when the fuel reaches the target burn-up of 25 GWd/t, the MK-I core would be progressively replaced with a larger core of MK-II carbide fuel (55% PuC+45%UC). Induction of MK-II subassemblies was started in 1996. However, based on the Post-Irradiation Examination (PIE) of the MK-I fuel at 25, 50 & 100 GWd/t, it became possible to enhance the burn-up of the MK-I fuel to 155 GWd/t. More than 900 fuel pins of MK-I composition have reached 155 GWd/t without even a single failure and have been discharged. One subassembly (61 pins) was taken to 165 GWd/t on trial basis, without any clad failure. The core has been progressively enlarged, adding MK-I subassemblies to compensate for the burn-up loss of reactivity and replacement of discharged subassemblies. The induction of MK-II fuel was stopped in 2003. One test subassembly simulating the composition of the MOX fuel (29% PuO2) to be used in the 500 MWe Prototype Fast Breeder Reactor was loaded in 2003. It is undergoing irradiation at 450 W/cm, and has successfully seen a burn-up of 92.5 GWd/t. In 2006, it was proposed to test high Pu MOX fuel (44% PuO2), in order to validate the fabrication and fuel cycle processes developed for the power reactor MOX fuel. Eight MOX subassemblies were loaded in FBTR core in 2007. The current core has 27 MK-I, 13 MK-II, eight high Pu MOX and one power reactor MOX fuel subassemblies. The reactor power has been progressively increased from 10.5 MWt to 18.6 MWt, due to the progressive enlargement of the core. This paper presents the evolution of the core based on the progressive enhancement of the burn-up limit of the unique high Pu carbide fuel.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In