Full Content is available to subscribers

Subscribe/Learn More  >

Thermo-Fluid Dynamic Simulation of a S.I. Single-Cylinder H2 Engine and Comparison With Experimental Data

[+] Author Affiliations
G. D’Errico, A. Onorati

Politecnico di Milano, Milano, Italy

S. Ellgas, A. Obieglo

BMW Group Research and Technology, München, Germany

Paper No. ICES2006-1311, pp. 235-245; 11 pages
  • ASME 2006 Internal Combustion Engine Division Spring Technical Conference
  • ASME 2006 Internal Combustion Engine Division Spring Technical Conference (ICES2006)
  • Aachen, Germany, May 7–10, 2006
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 0-7918-4206-1 | eISBN: 0-7918-3775-0
  • Copyright © 2006 by ASME


This paper deals with the modelling and experimental work carried out on a BMW single cylinder spark ignition hydrogen engine. The authors have enhanced a 1D thermo-fluid dynamic simulation code in order to cope with the different chemical and physical aspects due to the fuelling of a spark ignition engine with hydrogen rather than with conventional gasoline. In particular the combustion module, which is based on a quasi-dimensional approach, has been extended by introducing the possibility of predicting the burning rate of the combustion of a homogeneous mixture of hydrogen and air. A fractal approach was followed for the turbulent flame speed evaluation, while an extend database for laminar burning velocities was created applying a kinetic simulation code for one-dimensional laminar flames. The modelling of the whole intake and exhaust systems coupled to the engine has been addressed, considering port-injection fuel system, in which hydrogen has been injected at very low temperature (cryogenic conditions). The fundamental 1D fluid-dynamic equations are solved by means of second order finite difference schemes; the working fluid is considered as a mixture of ideal gases, with specific heats depending on the gas temperature and the mole fractions of species, whose correlations for each specie (including para-hydrogen) have been extended in the region of low temperature. A first validation of the enhanced model is shown in the paper, comparing the computed results with the experimental data of in-cylinder pressures, intake and exhaust instantaneous pressure histories at different locations and NO emissions discharged by the cylinder.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In