0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Analysis of a Small Turbo-Charged Spark-Ignition Engine

[+] Author Affiliations
Gustavo Fontana, Enzo Galloni, Roberto Palmaccio

University of Cassino, Cassino, Italy

Enrico Torella

ELASIS S.C.p.A., Italy

Paper No. ICES2006-1336, pp. 75-86; 12 pages
doi:10.1115/ICES2006-1336
From:
  • ASME 2006 Internal Combustion Engine Division Spring Technical Conference
  • ASME 2006 Internal Combustion Engine Division Spring Technical Conference (ICES2006)
  • Aachen, Germany, May 7–10, 2006
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 0-7918-4206-1 | eISBN: 0-7918-3775-0
  • Copyright © 2006 by ASME

abstract

The reduction of green-house gas emissions, that is the reduction of engine fuel consumption, is becoming a primary requirement for the automotive industry as well as meeting current and future emission legislations. Performing high torque values with small displacement engines, the so-called “downsizing”, permits, in general, to limit some typical engine losses (for instance: pumping and friction losses), increasing the overall engine efficiency. This means to improve vehicle fuel economy and, as a consequence, the CO2 emissions avoiding a performance decrease. In this paper, the behavior of a small displacement turbocharged spark-ignition engine prototype, for medium size passenger cars, has been analyzed. 3-D numerical simulations have been carried out in order to achieve a lot of information on engine performance and control parameters. Thus, at different engine operating points, intake and exhaust manifold pressure, volumetric efficiency, high pressure curves, the flow field of the fresh charge within the cylinder, the air to fuel ratio distribution, the residual gas fraction distribution and so long have been calculated. Since, as usual, the turbocharged version of the engine under study derives from an existing naturally aspirated engine, the purpose of this investigation is to obtain a detailed picture of the variations produced by turbo-charging on engine main parameters. The increase of knock risk due to higher cylinder pressures has been evaluated as well. Thanks to the three dimensional analysis, sound information have been obtained, so that suggestions for modifying some geometric engine parameters, according to the variations imposed by turbo-charging, have been proposed. Computations have been performed by means of the 3-D AVL Fire code. Initial and boundary conditions have been evaluated by means of 1-D, unsteady computations running separately from the 3-D code. The model utilized in this study has been validated by comparing the obtained results to the measured data provided by the research center of the engine manufacturer.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In