0

Full Content is available to subscribers

Subscribe/Learn More  >

Multi-Dimensional, Transient Fluid Flow Simulations in the Manifold of a Four-Stroke Single-Cylinder Engine

[+] Author Affiliations
T. N. C. Anand, R. V. Ravikrishna

Indian Institute of Science, Bangalore, India

Paper No. ICEF2005-1273, pp. 475-483; 9 pages
doi:10.1115/ICEF2005-1273
From:
  • ASME 2005 Internal Combustion Engine Division Fall Technical Conference
  • ASME 2005 Internal Combustion Engine Division Fall Technical Conference (ICEF2005)
  • Ottawa, Ontario, Canada, September 11–14, 2005
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 0-7918-4736-5 | eISBN: 0-7918-3768-8
  • Copyright © 2005 by ASME

abstract

Multi-dimensional computational fluid dynamics simulations were carried out on the intake manifold and cylinder of a four-stroke single cylinder two-wheeler engine. The complex geometry of the manifold and the engine cylinder, and the motion of the intake valve were taken into consideration. Both air flow and two-phase calculations were done to predict the trajectory of the liquid fuel and identify regions of impingement which could lead to film formation and high emissions at startup. The results show that the present geometry of the manifold is non-optimum as large recirculation zones are present. The two-phase simulations show that fuel transport is significantly affected due to the recirculation under idling conditions and significant impingement occurs. The numerical results obtained could be utilized to improve the flow in the manifold for lowering emissions.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In