Full Content is available to subscribers

Subscribe/Learn More  >

Preliminary Energy-Efficiency Analysis on Multi-Pulse Injection Schedule in a Diesel Engine

[+] Author Affiliations
Raj Kumar, Ming Zheng, Graham T. Reader

University of Windsor, Windsor, ON, Canada

Paper No. ICEF2005-1212, pp. 153-160; 8 pages
  • ASME 2005 Internal Combustion Engine Division Fall Technical Conference
  • ASME 2005 Internal Combustion Engine Division Fall Technical Conference (ICEF2005)
  • Ottawa, Ontario, Canada, September 11–14, 2005
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 0-7918-4736-5 | eISBN: 0-7918-3768-8
  • Copyright © 2005 by ASME


The multi-pulse fuel injection in a diesel engine is considered an effective way to reduce nitrogen oxides (NOx) emissions by heat-release shaping. In this research a preliminary energy efficiency analysis has been conducted for various split injection rates and schedules using the in-house and the commercial engine simulation software. Theoretical findings have been validated using experimentally obtained cylinder pressure data for various injection timings from a single-cylinder engine. The theoretical analysis on the shape of heat- release has been made to evaluate the energy efficiency of the post injection pulses on the engine exhaust temperature increases. An investigation of the cycle-to-cycle variation has also been performed for the measured cylinder pressure data.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In