0

Full Content is available to subscribers

Subscribe/Learn More  >

On the Effects of Aero Boundary Layer Control on Pressure Drag Reduction in Supercavitating Bodies

[+] Author Affiliations
Yasmin Khakpour, Miad Yazdani

Sharif University of Technology, Tehran, Iran

Paper No. OMAE2005-67240, pp. 665-675; 11 pages
doi:10.1115/OMAE2005-67240
From:
  • ASME 2005 24th International Conference on Offshore Mechanics and Arctic Engineering
  • 24th International Conference on Offshore Mechanics and Arctic Engineering: Volume 2
  • Halkidiki, Greece, June 12–17, 2005
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 0-7918-4196-0 | eISBN: 0-7918-3759-9
  • Copyright © 2005 by ASME

abstract

Supercavitation is known as the way of viscous drag reduction for the projectiles, moving in the liquid phase. In recent works, there is distinct investigation between cavitation flow and momentum transfer far away from the cavity surface. However, it seems that there is strong connection between overall flow and what takes place in the sheet cavity where a constant pressure distribution is assumed. Furthermore as we’ll see, pressure distribution on cavity surface caused due to overall conditions, induct nonaxisymetric forces and they may need to be investigated. Primarily we describe how pressure distribution into the cavity can cause separation of the aero boundary layer. Then we present some approaches by which this probable separation can be controlled. Comparisons of several conditions exhibits that at very low cavitation numbers, constant pressure assumption fails particularly for gradient shaped profiles and separation is probable if the flow is sufficiently turbulent. Air injection into the NATURALLY FORMED supercavity is found as an effective way to delay probable separation and so significant pressure drag reduction is achieved. In addition, the position of injection plays a major role to control the aero boundary layer and it has to be considered. Moreover, electromagnetic forces cause to delay or even prevent separation in high pressure gradient flows and interesting results obtained in this regard shows significant drag reduction in supercavitating vehicles.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In