0

Full Content is available to subscribers

Subscribe/Learn More  >

Designing Efficient Trajectories for Underwater Vehicles Using Geometric Control Theory

[+] Author Affiliations
M. Chyba, T. Haberkorn

University of Hawaii, Honolulu, HI

Paper No. OMAE2005-67226, pp. 637-645; 9 pages
doi:10.1115/OMAE2005-67226
From:
  • ASME 2005 24th International Conference on Offshore Mechanics and Arctic Engineering
  • 24th International Conference on Offshore Mechanics and Arctic Engineering: Volume 2
  • Halkidiki, Greece, June 12–17, 2005
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 0-7918-4196-0 | eISBN: 0-7918-3759-9
  • Copyright © 2005 by ASME

abstract

In this paper, we consider the minimum time problem for underwater vehicles. Using Lagrangian mechanics, we write the equations of motion for marine vehicles with 6 degrees of freedom as a controlled mechanical system. We then apply the necessary conditions from the maximum principle for a trajectory to be time optimal. Using techniques from differential geometry we analyze the resuls. Finally we supplement the theoretical study with numerical simulations.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In